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It is shown that the advection-diffusion equation for contaminant dispersion in water 
of variable depth admits of an inverse approach in which the stochastic mean 
concentration at a fixed sensitive location is calculated for arbitrary discharge sites. 
A ray method is used to obtain simple approximate solutions for the inverse problem 
when the sensitive location is situated at the shoreline. This makes explicit the 
considerable improvements in shoreline pollution levels which can be gained by siting 
effluent outfalls further away from the shore. 

1. Introduction 
In  this environmentally conscious age there is a heightened or even an exaggerated 

awareness of the consequences of siting an effluent outfall too close to a high-amenity 
area. Thus, i t  is becoming standard engineering practice to assess the consequences 
of choosing any particular discharge site (Yotsukura& Cobb 1972; Yotsukura & Sayre 
1976 ; Fischer et al. 1979). While this does ensure that the pollution level is acceptable, 
it leaves to  intuition the selection of the prospective discharge site and does not make 
explicit the improvements that can be gained by siting outfalls further from the shore. 
For example, on a uniformly sloping beach a one-third increase in the offshore 
distance reduces the peak concentration a t  the shoreline by a factor of two (Kay 1983). 

One objective of the present paper is to  give an inverse approach to effluent-disposal 
problems. We identify a sensitive location, such as a drinking-water intake at the 
side of a wide river, and we specify the continuous contaminant loading that is to 
be disposed of into the flow somewhere upstream of this location. We then ask what 
is the concentration level experienced a t  the sensitive location as a function of the 
discharge position ? 

The mathematical basis of the inverse approach is the use of Green’s reciprocal 
theorem. To invoke this theorem we model the contaminant dispersion by means of 
a depth-averaged linear advection-diffusion equation, with the flow field independent 
of the discharge site. Thus there are several implicit restrictions upon the applicability 
of the inverse approach (the far-field approximation). In  particular, stochastic or 
vertical variations in concentration are ignored, and the sensitive location is assumed 
to be well outside the zone (of order 100 m) in which momentum or buoyancy effects 
are important. 

A second objective of this paper is to  sharpen our intuition about the relative roles 
of the water depth, current strength and turbulence intensity in the selection of 
discharge sites. To do this a simple (but accurate) approximate method of solution 
is derived for the inverse problem when the sensitive location is situated a t  the 
shoreline, and some illustrative examples are studied in detail. 
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For a highly utilized shoreline, all locations can be thought of as being of equal 
importance, and the relevant consideration becomes the maximum concentration 
anywhere along the shoreline. A simplified version of this problem is addressed in $9 
of this paper, with the depth profile modelled as having fixed offshore shape, but with 
a depthscale that changes along the flow. A quantitative example is given of how 
the presence of offshore sand banks shields the shoreline from the effects of discharges 
made at the far side of the sand banks. 

2. Green’s reciprocal theorem for advection-diffusion 
For a vertically well-mixed flow the concentration c,(x,  y)  associated with a steady 

discharge of strength q a t  a point (xl, y,), satisfies the depth-averaged advection- 
diffusion equation 

V . ( h u c , )  - V . ( h n ~ V C , )  = qS(z-x,) S(y--y1), (2 .1a)  

h(ucl -n*Vcl )*n = 0 on a52, ( 2 . l b )  

with v. (hu) = 0, ( 2 . 2 a )  

hu*n=O ona52. (2 .2b)  

Here h(x ,y )  is the water depth, u(z ,y )  the steady flow velocity, n the horizontal 
contaminant-dispersion tensor, S the Dirac delta function, a52 the boundary of the 
flow region, and n the outward normal. 

The adjoint, reversed-flow, problem for a monitoring position (x,, y2) is 

- v .  (huc,) - V * ( h n  ’ VC,) = qS(x - x2) 6(y- y,), (2 .3a)  

h(uc2+n*VcZ)  = 0 on 22. (2 .3b)  

The best known of Green’s theorems is the divergence theorem in two dimensions, 
which equates certain area and boundary integrals. The reciprocal theorem is a 
particular application of the divergence theorem to an  adjoint pair of equations, such 
as ( 2 . 1 a ) ,  ( 2 . 3 a ) .  We consider the identity 

j~c , [V. (huc , ) -V. (hn.Vcl ) l  dA + cl[V*(huc2) + V . ( h n * V c , ) ]  d A  
j n  

- jn c1 c2 V *  (hu) dA 

= J c ,  h(ucl - x - V c l ) . n  dl+ J c1 h(uc, + x - V c , ) . n  dl- J c1 c2 hu-n dl. (2 .4)  
an an an 

If c l ,  c,  are the solutions of (2.1 a ,  b ) ,  (2 .3a ,  b )  and if the flow field satisfies (2 .2a ,  b ) ,  
then we can separately evaluate the area and boundary integrals to derive the result 

‘I[c2(x12 Y1) - C , ( X , ,  Y,)l = 0, (2 .5a)  

i.e. Cl(%., Y2) = CZ(% Yl). (2 .5b)  

Hence to  calculate the concentration c1 a t  the specified sensitive location (x2, y,) 
it suffices to solve the reversed-flow problem (2 .3a ,  b )  for the concentration c2 a t  the 
prospective discharge site (xl, y,). The advantage of this adjoint problem is that, to 
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compare the impacts of a whole range of alternative discharge sites, i t  is only 
necessary to evaluate the single function c2 over the range of discharge positions. 
Because the flow is reversed, the 'influence' plume for c2 spreads out in the opposite 
direction to that of the c1 plume. In  numerical schemes it would be essential to take 
account of this reversed orientation to avoid the computational catastrophe of 
solving a diffusion problem in the up-gradient direction. 

3. Long-plume approximation 
I n  a turbulent flow the dispersion tensor n scales as the product of the water depth 

h and the friction velocity u*: 

K~~ z 5.9hu,, K~~ x 0.2hu, (3.1) 

(Fischer et al. 1979, equations (4.46), (5.4)). I n  wide rivers the horizontal lengthscale 
B for topographic features greatly exceeds the water depth h, and the horizontal 
advection velocity u greatly exceeds u*. Thus, in the advection-diffusion equations 
(2.1 a ) ,  (2.3a) the dispersion tensor K is numerically very small (i.e. very much smaller 
than Bu). This has the physical consequence that advection dominates diffusion, and 
the contaminant plume is extremely long and narrow (see figure 5.6 of Fischer et al. 
1979). 

Mathematically the elongation of the contaminant plume means that transverse 
gradients greatly exceed longitudinal gradients. To exploit this simplifying feature 
we follow Yotsukura & Cobb (1972) and use generalized coordinates (2, y) aligned 
along and across the flow (see figure 1 ) .  Thus, neglecting diffusion along the flow, we 
approximate the reversed-flow equations (2 .3a,  b )  : 

( 3 . 2 ~ )  

(3.2b) 

with az(m2 hu) = 0, (3.3) 

where m, dx, m2 dy are the incremental distances along and across the flow (Yotsukura 
& Sayre 1976, equation (2.1)). 

4. Local solution (uniformly sloping beach) 
Most human activities are confined to  the land. Thus the sensitive location for water 

pollution can generally be expected to be a t  the shoreline. Sufficiently close to the 
shoreline the depth varies linearly with offshore distance : 

h = ho(Y/yo), (4.1) 

where h, is the water depth a t  a reference distance yo. Also, close to the critical 
location the flow can be regarded as being locally straight and independent of x. 

This idealization of a shoreline discharge has been studied by Kay (1983). In  
particular, if we model the longshore velocity, friction velocity, and the transverse 
diffusivity 

(4.2a, b ,  c) 

6 F L M  130 
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FIGTJRE 1. Sketch of the along- and cross-flow coordinate system. 

then the solution for c, is 

4.3) 

The modelling (4.2u-c) for the flow and turbulence follows from the assumptions that 
the pressure gradient driving the flow is independent of y, the eddy viscosity scales 
as hu,, and there is proportionality between u and u*. Kay (1983) also gives the 
solutions for other power-law models for the flow properties, and the more-complicated 
exact solutions for off-shore discharges. 

Figure 2 shows the concentration a t  the sensitive location as a function of the 
discharge position. The chosen parameter values are 

K~ = 0.2h0u,,, u * ~  = O.lu0, q = houoyo. (4.4) 

If we regard the c, = 1 contour as demarcating the boundary between desirable and 
undesirable discharge sites (i.e. yo is the width of a well-mixed uniform channel 
necessary for the concentration to be just acceptable), then the proximity of the 
c2 = 0.2 and c2 = 5 contours indicates how easy i t  is either to achieve much-improved 
or totally unacceptable shoreline pollution levels. 

5. Ray approximation 
In the spirit of the WKB approximation we shall assume that, with a suitable choice 

for the amplitude and decay functions u(x, y), $(x, y),  the local solution (4.3) can be 
extended : 

c = uexp(  +$). (5.1) 

Here the + sign corresponds to the forward-flow problem, and the - sign to the 
reversed-flow problem. This variant of the WKB method is due to Cohen & Lewis 
(1967), and has been used by the author (Smith 1981) to study discharges well away 
from a shoreline. 

If we substitute the ansatz (5.1) into the field equation (3 .2u) ,  and its forward-flow 
counterpart, then we generate terms proportional to exp ( & $) and & exp ( +_ $). 
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Y o  

Shoreline 

FIGURE 2. Kay’s (1983) solution for the concentration experienced at the critical shoreline location 
as a function of the upstream discharge position. Note the 100: 1 difference between the along- and 
cross-flow lengthscales. 

Equating these groups of terms separately to zero, we have 

The essential features for the WKB-type approximation is that + varies more 
rapidly than does the amplitude a. This is ensured by the occurrence of 1 / ~ ~  in the 
exponential in (4.3). The corresponding approximation of (5.2) is 

m 

m2 
m,hua ,+- -1h~ , , (a ,+ )~  = 0. (5.4) 

The error incurred is of second order in the numerical smallness of the diffusivity K~~ 

relative to typical horizontal length and advection-velocity scales (i.e. an error of 
order (h/B)2 (u* /u )~) .  

Close to the critical shoreline location (x2,0) the depth becomes linear, and for 
compatibility with the location solution (4.3) we must have 

The limiting process amounts to taking the reference position yo sufficiently close to 
shore so that, despite the varying geometry, the representations (4.1), (4.2) are locally 
valid. 

What has been achieved with the ray approximation is that the parabolic equation 
( 3 . 1 ~ )  has been replaced by the hyperbolic equations (5.3), (5.4). Thus instead of the 
concentration at any one point being influenced by all other points, the influence only 
comes outwards from the source (along rays). This permits (5.3), (5.4) to be solved 
by marching methods. The main limitation of the ray approximation is that i t  is only 
applicable for wide rivers or open coastlines. It fails to account for the reflection at 
any far shoreline. 

6-2 
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6. Decay exponent 
If we introduce the diffusivity/velocity ratio 

m u  
mi u mi u 

x 0 . 2 h 2 2 ,  F = -  m1 K 2 2  

then the eikonal equation (5 .4)  for $ can be rewritten 

a, $ - F(a, $ 1 2  = 0. (6 .2)  

This first-order partial differential equation can be solved by the method of 
characteristics or rays (Courant & Hilbert 1962, $ 2 ) .  For the reversed-flow problem 
the ray direction is along the vector 

( - 1 , A )  with A = 2Fa,$ (6.3)  

(i.e. in the upstream direction). We introduce a ray parameter s so that differentiation 

a a  a 
as ax ay 

= - - + A - .  
along a ray is defined : 

- 

I n  particular, to  extend a ray we need to solve the ray-tracing equations 

ax - 1, a Y  - = A .  --- 
as as (6 .5a,  b)  

The powerful feature of the method of characteristics is that  not only do x, y satisfy 
elementary ordinary differential equations along rays, but so also do the decay 
exponent $ and the ray orientation A :  

( 6 . 6 ~ )  

(6 .6b)  

where the diffusivity/velocity ratio F and its spatial derivations are evaluated at the 
present location of the ray. 

Over a wide range of roughness the ratio u.Ju lies in the narrow band 0.05-0.1. 
Thus, essentially F is proportional to the local water depth, and increases linearly 
near the shoreline. From (6.5b, 6 .6b)  we can infer that  the rays emerge from the 
critical shoreline location ( x 2 ,  0) with the orientation initially zero and increasing 
linearly with 5 (see figure 3). This means that the appropriate initial conditions for 
the ray-tracing equations (6 .5) ,  (6 .6)  are 

i3A 
x = x 2 ,  y = O ,  $ = O ,  A = O ,  - = p  at s = O ,  

as 

where the initial curvature p serves to label the individual rays. 
The subsequent orientation of the rays depends upon the local behaviour of the 

diffusivity/velocity ratio F(x,  y), as can be seen in (6 .6b) .  If the water depth increases 
upstream (a, F < 0), or if the transverse depth slope increases with y, then the rate 
of divergence of the rays is increased. Shallow water upstream, or a flattening out 
of the water depth, has the opposite effect of reducing the rate of divergence of the 
rays. Thus we can infer from ( 6 . 6 ~ )  that  $ will be larger when the upstream discharge 
is in relatively deep water. Equivalently, a deep-water discharge leads to  lower 
concentrations c2 experienced a t  the critical location (see 9 8 below). 
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FIGURE 3. Sketch of backwards-going rays emerging from the critical shoreline location. 

7. Amplitude factor 
The derivatives of the amplitude factor a(x ,  y) in the transport equation (5.3) 

exactly conform to the ray direction. Thus, making use of the definitions (6.3), (6.4), 
we can rewrite the transport equation: 

= 0. 
1 aa 1 ad a 1 
- -+- --+id - (m, hu) - 
aaS 2 ay ay m2 hu 

Differentiating d with respect to y involves moving across the rays. This leads us 
to consider the area J between adjacent rays: 

a x a y  axay  
ap as a s a p *  J = ______ 

Using the chain rule, relating x-, y- and p - ,  s-derivatives, we can obtain the general 
result 

For the case under consideration here we have (from (6.5a, b ) )  

(7.4) 

This result (7.4),  together with the mass-conservation equation (3 .2) ,  permits us to 
rewrite the transport equation (7.1) : 

(m,hu) = 0, --+---+--- 
a a s  2 J a s  2m,huas 
l a a  i i a ~  1 1 a 

(7 .5)  

Integration with respect to s yields the result 

aJi(m, hu)i = constant along rays. (7.6) 

Thus greatest amplitudes are to be found where the rays are closest together or where 
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the water depth is least. Of course, to draw conclusions about the concentrations 

c2 = aexp(-$), (7.7) 
it is also necessary to allow for the exponential decay factor. 

Near the critical shoreline location we have, using (6.5), (6.7), (7.2), 

( 7 4  x = ~ ' - 8 ,  y = &s', J = 4s'. 

Thus, to satisfy the local asymptote (5.6), the ray constant must be given by 

(7.9) 

where it is implicit that we are also taking the limit x 4 x 2 .  

8. Separation-of-variables solution 
For any real topography the first (and hardest) task would be to measure or to 

calculate the velocity field, and inevitably the subsequent ray calculations would have 
to be numerical. With the continuing objective of sharpening our intuition, we seek 
instead an idealized class of problems which is amenable to exact solution. Specifically, 
we taken the diffusivity/velocity ratio F to have a separation-of-variables form 

This corresponds to the depth profile having a fixed offshore shape f2(y), but with 
a depthscale that varies along the flow as fi(z). 

The solution of the ray equations (6.5), (6.6) is given by 

(2PY JZ'fi(X) dX 
7 (8.2) X x = z2 - 8 ,  If;(O)]i fi( Y ) d  d Y = 6 f'(X2) 

and the corresponding solution for the decay exponent $ is 

Eliminating p in favour of x, y, we have the explicit solution for $: 

JX 

Evaluating the Jacobian (7.2), we have 
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Using (7.6), (7.9), (8.2), this leads to  a solution for the amplitude factor 

Ln-![ J72(Y)-:dY]2 

(mz wt [ lim Y+O 7 1  [- uo pl(x) x dX] 8 f z ( Y ) ~ f m ~ .  
(8.6) 

0 a =  
m,hu 4 K~ 

It is of interest to  note some general features of the solutions (8.4), (8.6). The 
denominator in the expression for 4 gives greatest weight to sections of shoreline with 
the steepest beach slopes (i.e. with fl(x) large). Thus the width of the reversed-flow 
contaminant plume is determined primarily by the regions of steep slope. In  the same 
way, but exaggerated by a $ power, the amplitude factor a(x, y) is diminished most 
rapidly in regioes of large fi (5). 

The behaviour as regards the y-dependence is totally reversed. It is regions of small 
f2(y) (sandbanks) which dominate the expressions (8.4), (8.6). The explanation for this 
difference is that  in the cross-flow direction, a region of low diffusivity is an effective 
barrier to  pollution. However, in the flow direction there is no such blockage because 
the contaminant is carried by the flow past the region of low diffusivity. 

As a simple extension of Kay's solution (4.3), we take m, = 1 and we model the 
longshore velocity, depth and diffusivity by 

( 8 . 7 d )  

wherefl(x)m2(x) measures the relative steepness of the beach a t  different points along 
the shoreline. The resulting formula for the concentration distribution is 

i.e. Y f,(Y) = - >  
Yo 

We remark that this is an exact solution of ( 3 . 2 ~ )  rather than a first-order 
approximation. 

Figures 4 (a ,  b )  show the contrasting cases 

with K~ and q specified as in figure 1 (i.e. by (4.4)). The vulnerability of the critical 
location to upstream discharges is greatest when the water is shallower upstream. 
I n  both cases the benefits of moving the discharge well away from the shoreline are 
just as marked as in the constant-slope case (figure 2) .  

9. Maximum shoreline concentration 
Throughout the above analysis we have emphasized the dependence of the decay 

exponent and the amplitude factor upon the discharge position. However, as can be 
seen in the explicit solutions (8.4), (8.6), there is also a dependence upon the critical 
shoreline location x2. As noted in Q 1 ,  for highly utilized shorelines all locations are 
of equal importance, and we are concerned to evaluate the maximum shoreline 
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Y o  

Beach slope increasing --+ 

Y o  

Beach slope decreasing --* 
FIGURE 4. Concentration experienced at the critical shoreline location as a function of the upstream 
discharge position when the beach slope is (a)  exponentially increasing downstream, ( b )  exponentially 
decreasing downstream, with an e-folding distance of 500y0. 

concentration. From the ray ansatz (5.1), we infer that  this worst case arises when 

For the idealized geometrics considered in $8, (9.1) implicitly determines x 2  for a 
given discharge position (x, y) : 

c f , ( X )  d X  = & [ r j 2 (  0 Y)-4 d Y ]  ’. 
Thus, for nearshore discharge positions, the downstream distance for maximum 
concentration varies linearly with the offshore distance of the discharge (Kay 1983). 
The proportionality factor involves 1 / K ~ ,  allowing for the considerable elongation of 
the contaminant plume. 

Substituting the above result (9.2) for x2 into (8.4), (8.6), we find that the peak 
shoreline concentration is given by 

Again, for nearshore discharges we recover Kay’s (1982) uniform-beach result that 
the peak concentration a t  the shoreline is inversely proportional to the ij power of 
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FIGURE 5 .  The peak concentration a t  the shoreline as a function of discharge distance away 
from the shoreline for depth profiles ( a )  with, and (6) without, offshore sandbanks. 

the offshore distance of the discharge. Remarkably, this formula does not involve x. 
I n  deeper water the more-rapid widening of the contaminant plume is exactly 
counterbalanced by the earlier occurrence of the shoreline maximum. 

The comparatively large power of the integral term in the denominator of (9 .3)  
means that i t  is the full-depth topography that is important, and not just the depth 
a t  the discharge. For example, a region of shallow water (i.e. of small fi) inshore of 
the discharge can profoundly reduce the shoreline concentration. Physically what 
happens is that  the region of low transverse diffusivity delays the transport of 
contaminant towards the shoreline, while diffusion away from shore continues to 
reduce the concentration. As a quantitative example, figure 5 shows the peak 
shoreline concentrations for the two depth profiles 

both with 

( 9 . 4 ~ )  

(9.4b) 

K ~ , u * ~ , ~  are as specified in (4 .4) .  For nearshore discharges, the more-efficient dif- 
fusion and advective flushing in the deep-water case (9.4b) means that the shoreline 
concentrations are lower than for the shallow-water case ( 9 . 4 ~ ) .  However, if the 
pipeline can be extended beyond the sand banks, then advantage can be taken of 
the shielding effect of the shallow water. Indeed, the steepness of the concentration 
profile ( a )  in figure 5 shows that spectacular improvements in shoreline pollution levels 
can be obtained for quite modest relocations of the discharge site - as much as a 
halving of the peak shoreline concentration for a one-sixth increase in the offshore 
distance of the effluent outfall. 
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